18 research outputs found

    U-Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina) : correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane

    Get PDF
    The Sierras Pampeanas of Argentina, the largest outcrop of pre-Andean crystalline basement in southern South America, resulted from plate interactions along the proto-Andean margin of Gondwana, from as early as Mesoproterozoic to Late Paleozoic times (e.g., Ramos, 2004, and references therein). Two discrete Paleozoic orogenic belts have been recognized: the Early Cambrian Pampean belt in the eastern sierras, and the Ordovician Famatinian belt, which partially overprints it to the west (e.g., Rapela et al., 1998). In the Western Sierras Pampeanas, Mesoproterozoic igneous rocks (ca. 1.0–1.2 Ga) have been recognized in the Sierra de Pie de Palo (Fig. 1) (McDonough et al., 1993 M.R. McDonough, V.A. Ramos, C.E. Isachsen, S.A. Bowring and G.I. Vujovich, Edades preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras Pampeanas occidentales de San Juán: sus implicancias para el supercontinente proterozoico de Rodinia, 12° Cong. Geol. Argentino, Actas vol. 3 (1993), pp. 340–342.McDonough et al., 1993, Pankhurst and Rapela, 1998 and Vujovich et al., 2004) that are time-coincident with the Grenvillian orogeny of eastern and northeastern North America (e.g., Rivers, 1997 and Corrievau and van Breemen, 2000). These Grenvillian-age rocks have been considered to be the easternmost exposure of basement to the Precordillera Terrane, a supposed Laurentian continental block accreted to Gondwana during the Famatinian orogeny (Thomas and Astini, 2003, and references therein). However, the boundaries of this Grenvillian belt are still poorly defined, and its alleged allochthoneity has been challenged (Galindo et al., 2004). Moreover, most of the Grenvillian ages so far determined relate to igneous protoliths, and there is no conclusive evidence for a Grenvillian orogenic belt, other than inferred from petrographic evidence alone (Casquet et al., 2001). We provide here the first evidence, based on U–Pb SHRIMP zircon dating at Sierra de Maz, for a Grenville-age granulite facies metamorphism, leading to the conclusion that a continuous mobile belt existed throughout the proto-Andean margin of Gondwana in Grenvillian times

    Isotope (Sr, C) and U–Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times

    Get PDF
    The Sierras de Córdoba Metasedimentary Series consists of marbles and metasiliciclastic rocks of Ediacaran to early Cambrian age (ca. 630 and 540 Ma) that underwent high-grade metamorphism during the collisional Pampean orogeny in the early Cambrian. The ages of the marbles were determined from the Sr-isotope composition (blind dating) of screened samples of almost pure calcite marble and were further constrained with C- and O-isotope data and U–Pb SHRIMP detrital zircon ages of an interbedded paragneiss. Two groups of samples are recognised with Sr-isotope composition ca. 0.7075 and 0.7085 that are considered stratigraphically significant. The first is inferred early Ediacaran, the second late Ediacaran to early Cambrian. The Sierras de Córdoba Metasedimentary Series is correlated for the first time with marble-bearing metasedimentary series in several sierras to the west and north of Sierras de Córdoba (e.g., the Difunta Correa Sedimentary Sequence and the Ancaján Series), implying that all were probably parts of an originally extensive sedimentary cover. These series bear evidence of sedimentary sources in the Mesoproterozoic (and Paleoproterozoic) basement of the Western Sierras Pampeanas (part of the large MARA continental block) and farther west (Laurentia?). In terms of the age of limestones/marbles and detrital zircon patterns, the Sierras de Córdoba Metasedimentary Series differs strongly from the older section of late Ediacaran to early Cambrian Puncoviscana Formation of northwestern Argentina, which mostly outcrops in northern Sierra Chica and Sierra Norte, with sedimentary input from western Gondwana sources

    Mid- to late Cambrian docking of the Rio de la Plata craton to southwestern Gondwana : age constraints from U-Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina)

    Get PDF
    The Early Palaeozoic stratigraphy and tectonic history of the Eastern Sierras Pampeanas of central Argentina are complicated by metamorphism and deformation resulting from the Pampean (545–510 Ma) and Famatinian (490–440 Ma) orogenies. We report U–Pb sensitive high-resolution ion microprobe dating of detrital zircons in two metasedimentary successions exposed at Quebrada de La CĂ©bila (c. 28°45'S, 66°25'W): the Ambato and the La CĂ©bila metamorphic complexes. The Ambato zircons record age peaks corresponding to Pampean (530 ± 10 Ma), Brasiliano (c. 570 and c. 640 Ma), Grenville (c. 950 to c. 1025 Ma) and minor Neoarchaean ages. Similar peaks are also apparent in the La CĂ©bila sample but it additionally contains Palaeoproterozoic zircons (c. 2.1 Ga) corresponding to the age of the Rio de la Plata craton, from which they are considered to have been sourced. Our interpretation is that the protolith of the Ambato complex was deposited prior to juxtaposition with the craton and is older than the Early Ordovician La CĂ©bila metamorphic complex. We infer that the craton reached its current relative position in the Mid- to Late Cambrian, after the main Pampean tectonothermal event (530–520 Ma) and before deposition of the La CĂ©bila protolith and the Achavil Formation (Sierra de Famatina), which contain comparable detrital zircon population

    K-bentonites in the Argentine Precordillera contemporaneous with rhyolite volcanism in the Famatinian Arc

    No full text
    New U-Pb radiometric dates for K-bentonite horizons within the Lower Cambrian to Middle Ordovician platform carbonates from the Precordillera terrane of NW Argentina provide further constraints on models for the allochthonous or parautochthonous accretion of this terràne. Two K-bentonite layers from the Talacasto section yield indistinguishable sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon dates of 469.5 + 3.2 Ma and 470.1 ± 3.3 Ma respectively. These are within uncertainty of the U-Pb SHRIMP zircon date of 468.3 = 3.4 Ma for a porphyritic rhyolite from the Famatinian magmatic arc, Sierra de las Planchadas, near Rio Chaschuil. Geochemical and isotope data also demonstrate the similarity of the K-bentonite and Chaschuil rhyolite parent magmas. Thus, it is highly probable that the Famatinian arc volcanoes. provided the ash for the K-bentonite horizons, suggesting proximity to the Precordillera terrane during the deposition of the Lower Cambrian to Middle Ordovician platform carbonates. This implication supports a mid-Ordovician collision model, but could also be compatible with a parautochthonous model for docking of the Precordillera terrane, by movement along the Pacific margin of Gondwana, rather than across the Iapetus Ocean

    Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina

    Get PDF
    Metasedimentary high-pressure upper amphibolite facies gneisses (1.2 ± 0.1 GPa and 780 ± 45 °C) at Las Chacras, Sierra de Valle FĂ©rtil, are tectonically juxtaposed to the westernmost parts (outboard) of the Famatinian (Early Ordovician) magmatic arc, which underwent syn-plutonic middle crust high-grade metamorphism at lower pressure. U–Pb SHRIMP zircon data suggest that the gneisses contain Famatinian igneous detritus, so that their sedimentary protoliths were probably deposited in a forearc basin and then rapidly underthrust and accreted to the lower crust of the arc, essentially coevally with arc magmatism at 468 ± 4 Ma. Chemically and isotopically juvenile garnetiferous amphibolites within the gneisses are recognised as representing the most primitive magmas so far observed in this belt, which has often been considered to be a continental arc derived from isotopically mature sources. This is consistent with the idea that at least part of the dominant Famatinian magmatism originated in depleted mantle but was heavily contaminated by crustal components

    Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina

    No full text
    Metasedimentary high-pressure upper amphibolite facies gneisses (1.2 ± 0.1. GPa and 780 ± 45 °C) at Las Chacras, Sierra de Valle Fértil, are tectonically juxtaposed to the westernmost parts (outboard) of the Famatinian (Early Ordovician) magmatic arc

    Late Famatinian (440–410 Ma) overprint of Grenvillian metamorphism in Grt‐St schists from the Sierra de Maz (Argentina): Phase equilibrium modelling, geochronology, and tectonic significance

    No full text
    The analysis of major and trace elements in zoned minerals is useful for deciphering parts of the tectonothermal evolution of polymetamorphic tarrain. We applied this approach to the Maz Metasedimentary Series in Western Sierras Pampeanas of Argentina, where polymetamorphism resulted in the overprinting of a Grenvillian basement (the Maz Complex) during the pervasive Rinconada tectonic phase of the Famatinian orogeny. The older metamorphism (M1) is assigned to the youngest Grenvillian metamorphic event recognized in this basement at c. 1035 Ma, whereas the Rinconada metamorphism (M2) was Silurian to early Devonian, essentially between 440 and 410 Ma. The latter resulted from oceanward migration of the orogenic front relative to earlier late Cambrian to Ordovician (490–470 Ma) tectonic phases of the Famatinian orogeny. The M1 and M2 metamorphic events have been recognized in a staurolite-garnet schist from the Maz Metasedimentary Series. Most metamorphic minerals from this rock were formed during the M2 event which was of the Barrovian type (±kyanite). Part of the metamorphic P–T evolution is recorded in the complex compositional zoning of garnet porphyroblasts. Three types of garnet were identified based on texture and chemistry, including trace elements (REEs). Phase equilibrium analysis, compositional isopleth, and multi-equilibrium thermobarometry were applied in order to establish the P–T history. M1 is represented by preservation of Grt1 ± Kfs ± Sil, with peak P–T condition of 790°C and 5.2 kbar, that is, granulite facies. This early metamorphic event was related to a deformational D1 episode represented by a relict S1 foliation. The latter is preserved as aligned inclusions in staurolite porphyroblasts and as relics of an older crenulated foliation in microlithons from the matrix. M2 followed a clockwise P–T path with three mineral growth stages. The earliest occurred at ~585°C and ~8.7 kbar and is represented by Grt2 ± St1 ± Bt1 + Qz. Grt2 was partially coeval with growth of St1, which was stable at ~625°C and 9.0 kbar. Grt2 + St1 are syn-kinematic to the main S2 foliation (D2 episode). Subsequently, decompression (D3) started as St2 (+ Bt2 + Ms1 + Qz + Pl) crystallized, and garnet was partially consumed at ~612–620°C and ~7.3–7.7 kbar. St3 + Grt3 crystallized at ~608°C and ~6.8 kbar at the end of D3. Increasing P–T conditions during the earlier M2 growth stage suggest burial of the Maz Metasedimentary Series, probably linked to tectonic thickening by underthrusting (tectonic phase D2). Peak metamorphic conditions were attained during thrust stacking. The tectonic phase (D2) was responsible for the main S2 foliation, which was penetrative at all scales. The nearly isothermal decompression path is compatible with exhumation, probably resulting from extension along discrete shear zones (tectonic phase D3) that produced a mylonitic foliation S3

    Early Carboniferous sub- to mid-alkaline magmatism in the Eastern Sierras Pampeanas, NW Argentina: A record of crustal growth by the incorporation of mantle-derived material in an extensional setting

    No full text
    A recently discovered granitic intrusion at Cerro La Gloria in western Sierra de Famatina (NW Argentina) is representative of sub- to mid-alkaline Carboniferous magmatism in the region. The main rock type consists of microcline, quartz and plagioclase, with amphibole, magnetite, ilmenite, biotite, epidote, zircon, allanite and sphene as accessory minerals. We report a U-Pb zircon SHRIMP age for the pluton of 349±3Ma (MSWD=1.1), i.e., Tournaisian. Whole-rock chemical composition and Nd isotope analyses are compatible with an origin by melting of older mafic material in the lower crust (ΔNdt between -0.58 and +0.46 and T DM values of about 1.1Ga). The pluton is intruded by penecontemporaneous to late alkaline mafic dykes that are classified as back-arc basalts. Coeval, Early Carboniferous A-type granites occur farther east in the Sierras Pampeanas, probably generated during lithospheric stretching. Overall, the Early Carboniferous granitic rocks show a west-to-east mineralogical and isotopic zonation indicating that magma genesis involved a greater contribution of juvenile material of mantle character to the west. Based on the observed patterns of geochronology, geochemistry and field relationships we suggest that A-type magma genesis in the Eastern Sierras Pampeanas was linked to an Andean-type margin where the lithospheric mantle played a role in its generation
    corecore